Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Circadian Rhythms ; 21: 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075740

RESUMO

The human circadian timing system depends on the light/dark cycle as its main cue to synchronize with the environment, and thus with solar time. However, human activities depend also on social time, i.e. the set of time conventions and restrictions dictated by society, including Daylight Saving Time (DST), which adds an hour to any degree of desynchrony between social and solar time. Here, we used Google Trends as a data source to analyze diurnal variation, if any, and the daily peak in the relative search volume of 26 Google search queries in relation to the transitions to/from DST in Italy from 2015 to 2020. Our search queries of interest fell into three categories: sleep/health-related, medication and random non sleep/health-related. After initial rhythm and phase analysis, 11 words were selected to compare the average phase of the 15 days before and after the transition to/from DST. We observed an average phase advance after the transition to DST, and a phase delay after the transition to civil time, ranging from 25 to 60 minutes. Advances or delays shorter than 60 minutes, which were primarily observed in the sleep/health-related category, may suggest that search timing for these queries is at least partially driven by the endogenous circadian rhythm. Finally, a significant trend in phase anticipation over the years was observed for virtually all words. This is most likely related to an increase in age, and thus in earlier chronotypes, amongst Google users.

2.
J Circadian Rhythms ; 19: 1, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33552216

RESUMO

Chronobiology is not routinely taught to biology or medical students in most European countries. Here we present the results of the chronobiology practicals of a group of students of the University of Padova, with a view to highlight some interesting features of this group, and to share a potentially interesting cross-faculty teaching experience. Thirty-eight students (17 males; 22.9 ± 1.6 yrs) completed a set of self-administered electronic sleep quality [Pittsburgh Sleep Quality Index (PSQI)], chronotype and sleepiness [Epworth Sleepiness Scale (ESS)] questionnaires. They then went on to complete sleep diaries for two weeks. Sixteen also wore an actigraph, 8 wore wireless sensors for skin temperature, and 8 underwent a course of chronotherapy aimed at anticipating their sleep-wake timing. Analyses were performed as practicals, together with the students. Average PSQI score was 5.4 ± 1.9, with 15 (39%) students being poor sleepers. Average ESS score was 6.5 ± 3.3, with 3 (8%) students exhibiting excessive daytime sleepiness. Seven classified themselves as definitely/moderately morning, 25 as intermediates, 6 as moderately/definitely evening. Students went to bed/fell asleep significantly later on weekends, it took them less to fall asleep and they woke up/got up significantly later. Diary-reported sleep onset time coincided with the expected decrease in proximal skin temperature. Finally, during chronotherapy they took significantly less time to fall asleep. In conclusion, significant abnormalities in the sleep-wake patterns of a small group of university students were observed, and the students seemed to benefit from chronotherapy. We had a positive impression of our teaching experience, and the chronobiology courses obtained excellent student feedback.

3.
Front Physiol ; 11: 997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013437

RESUMO

Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.

4.
PLoS Genet ; 15(6): e1008158, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194738

RESUMO

With the approach of winter, many insects switch to an alternative protective developmental program called diapause. Drosophila melanogaster females overwinter as adults by inducing a reproductive arrest that is characterized by inhibition of ovarian development at previtellogenic stages. The insulin producing cells (IPCs) are key regulators of this process, since they produce and release insulin-like peptides that act as diapause-antagonizing hormones. Here we show that in D. melanogaster two neuropeptides, Pigment Dispersing Factor (PDF) and short Neuropeptide F (sNPF) inhibit reproductive arrest, likely through modulation of the IPCs. In particular, genetic manipulations of the PDF-expressing neurons, which include the sNPF-producing small ventral Lateral Neurons (s-LNvs), modulated the levels of reproductive dormancy, suggesting the involvement of both neuropeptides. We expressed a genetically encoded cAMP sensor in the IPCs and challenged brain explants with synthetic PDF and sNPF. Bath applications of both neuropeptides increased cAMP levels in the IPCs, even more so when they were applied together, suggesting a synergistic effect. Bath application of sNPF additionally increased Ca2+ levels in the IPCs. Our results indicate that PDF and sNPF inhibit reproductive dormancy by maintaining the IPCs in an active state.


Assuntos
Proteínas CLOCK/genética , Proteínas de Drosophila/genética , Neuropeptídeos/genética , Reprodução/genética , Animais , Animais Geneticamente Modificados/genética , Encéfalo/metabolismo , Ritmo Circadiano/genética , Diapausa/genética , Diapausa/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Insulina/genética , Neurônios/metabolismo , Transdução de Sinais/genética
5.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30988163

RESUMO

Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular , Dimetil Sulfóxido/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/genética , Drosophila , Drosophila melanogaster/embriologia , Inativação Gênica , Longevidade , Masculino , Mitocôndrias/patologia , Doença de Parkinson/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteases Específicas de Ubiquitina/genética
6.
Front Physiol ; 10: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842743

RESUMO

Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.

7.
Front Mol Neurosci ; 11: 280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177872

RESUMO

Light is the main environmental stimulus that synchronizes the endogenous timekeeping systems in most terrestrial organisms. Drosophila cryptochrome (dCRY) is a light-responsive flavoprotein that detects changes in light intensity and wavelength around dawn and dusk. We have previously shown that dCRY acts through Inactivation No Afterpotential D (INAD) in a light-dependent manner on the Signalplex, a multiprotein complex that includes visual-signaling molecules, suggesting a role for dCRY in fly vision. Here, we predict and demonstrate a novel Ca2+-dependent interaction between dCRY and calmodulin (CaM). Through yeast two hybrid, coimmunoprecipitation (Co-IP), nuclear magnetic resonance (NMR) and calorimetric analyses we were able to identify and characterize a CaM binding motif in the dCRY C-terminus. Similarly, we also detailed the CaM binding site of the scaffold protein INAD and demonstrated that CaM bridges dCRY and INAD to form a ternary complex in vivo. Our results suggest a process whereby a rapid dCRY light response stimulates an interaction with INAD, which can be further consolidated by a novel mechanism regulated by CaM.

8.
Front Mol Neurosci ; 11: 238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072870

RESUMO

Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.

9.
PLoS Genet ; 14(7): e1007500, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30011269

RESUMO

Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , MicroRNAs/metabolismo , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Escuridão , Regulação para Baixo , Proteínas de Drosophila/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , MicroRNAs/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regulação para Cima
10.
Sci Rep ; 7(1): 4555, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676676

RESUMO

Recognizing that insights into the modulation of sleep duration can emerge by exploring the functional relationships among genes, we used this strategy to explore the genome-wide association results for this trait. We detected two major signalling pathways (ion channels and the ERBB signalling family of tyrosine kinases) that could be replicated across independent GWA studies meta-analyses. To investigate the significance of these pathways for sleep modulation, we performed transcriptome analyses of short sleeping flies' heads (knockdown for the ABCC9 gene homolog; dSur). We found significant alterations in gene-expression in the short sleeping knockdowns versus controls flies, which correspond to pathways associated with sleep duration in our human studies. Most notably, the expression of Rho and EGFR (members of the ERBB signalling pathway) genes was down- and up-regulated, respectively, consistently with the established role of these genes for sleep consolidation in Drosophila. Using a disease multifactorial interaction network, we showed that many of the genes of the pathways indicated to be relevant for sleep duration had functional evidence of their involvement with sleep regulation, circadian rhythms, insulin secretion, gluconeogenesis and lipogenesis.


Assuntos
Regulação da Expressão Gênica , Transdução de Sinais , Sono/fisiologia , Animais , Biologia Computacional , Drosophila/fisiologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genômica , Humanos , Metanálise como Assunto , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
11.
Nat Neurosci ; 12(11): 1431-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820704

RESUMO

Morning and evening circadian oscillators control the bimodal activity of Drosophila in light-dark cycles. The lateral neurons evening oscillator (LN-EO) is important for promoting diurnal activity at dusk. We found that the LN-EO autonomously synchronized to light-dark cycles through either the cryptochrome (CRY) that it expressed or the visual system. In conditions in which CRY was not activated, flies depleted for pigment-dispersing factor (PDF) or its receptor lost the evening activity and displayed reversed PER oscillations in the LN-EO. Rescue experiments indicated that normal PER cycling and the presence of evening activity relied on PDF secretion from the large ventral lateral neurons and PDF receptor function in the LN-EO. The LN-EO thus integrates light inputs and PDF signaling to control Drosophila diurnal behavior, revealing a new clock-independent function for PDF.


Assuntos
Relógios Biológicos/fisiologia , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Neuropeptídeos/metabolismo , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Relógios Biológicos/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Masculino , Atividade Motora/genética , Mutação/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
J Comp Neurol ; 516(1): 59-73, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19565664

RESUMO

About 150 clock neurons are clustered in different groups in the brain of Drosophila. Among these clock neurons, some pigment-dispersing factor (PDF)-positive and PDF-negative lateral neurons (LNs) are principal oscillators responsible for bouts of activity in the morning and evening, respectively. The full complement of neurotransmitters in these morning and evening oscillators is not known. By using a screen for candidate neuromediators in clock neurons, we discovered ion transport peptide (ITP) and short neuropeptide F (sNPF) as novel neuropeptides in subpopulations of dorsal (LN(d)s) and ventral (s-LN(v)s) LNs. Among the six LN(d)s, ITP was found in one that coexpresses long neuropeptide F (NPF) and cryptochrome. We detected sNPF in two LN(d)s that also express cryptochrome; these cells are distinct from three LN(d)s expressing NPF. Thus, we have identified neuropeptides in five of the six LN(d)s. The three LN(d)s expressing cryptochrome, with either ITP or sNPF, are the only ones with additional projections to the accessory medulla. Among the five s-LN(v)s in the adult brain, ITP was detected in the fifth neuron that is devoid of PDF and sNPF in the four neurons that also express PDF. By using a choline acetyltransferase (Cha) Gal4, we detected Cha expression in the two sNPF producing LN(d)s and in the fifth s-LN(v). In the larval brain, two of the four PDF-producing s-LN(v)s coexpress sNPF. Our findings emphasize that the LN(d)s are heterogeneous both anatomically and with respect to content of neuropeptides, cryptochrome, and other markers and suggest diverse functions of these neurons.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Colina O-Acetiltransferase/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Criptocromos , Proteínas do Olho/metabolismo , Imuno-Histoquímica , Larva , Locomoção/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Proteínas R-SNARE/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Toxina Tetânica/farmacologia
13.
PLoS Biol ; 5(11): e315, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18044989

RESUMO

Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest-activity rhythms and relies upon different groups of PERIOD (PER)-expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day-night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/citologia , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Neurônios/citologia , Fotoperíodo , Animais , Comportamento Animal , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Genótipo , Luz , Atividade Motora/fisiologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organismos Geneticamente Modificados , Proteínas Circadianas Period , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...